
Diffusive relaxation for a system of coagulating particles-interactions between the modes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 277

(http://iopscience.iop.org/0305-4470/24/1/034)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 10:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 24 (1991) 277-288. Printed in the U K  

Diffusive relaxation for a system of coagulating particles- 
interactions between the modes 

S Simons 
School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, 
London E l  4NS. UK 

Received 7 Semember 1990 

Abstract. A theoretical treatment is developed of the relaxation of a spatially 
inhomogeneous system of panicles simultaneously undergoing diffusion and coagulation. 
I t  is shown in general that the effect of coagulation is such as to induce interactions between 
otherwise independent diffusive modes characterized by wavenumbers h and k ' ,  leading 
to the spontaneous creation of modes with wavenumber K =  k * k ' .  The consequences of 
this are investigated quantatively for the Situation when initially there exists a set ofdiscrete 
modes, and numerical estimates are made of the effect. 

1. Introduction 

Consider a spatially inhomogeneous suspension of particles in a stationary fluid 
(aerosoi or hydrosoij. if the voiume Fraction of panicuiare matter p(r ,  r j  is increased 
in some finite region of the fluid then this increase will decay, as the particles diffuse 
away, in accordance with the diffusion equation 

JP -= D Q ~ ~  
at 

where D is the particie diiiusion coeEcient. On expressing rp in  the Form 

J 

it immediately follows from equation (1) that each Fourier component rp(k, f )  decays 
monotonically with time, with 

q ( k ,  I)=q(k,O)exp(-Dk*f).  (3) 

The above description will remain true as long as the particles retain their 
individuality. However, the Brownian motion of the particles which causes them to 
diffuse will at the same time cauqe them to coagulate (Smoluchowski 19171, and the 
question then arises ofwhat effect this will have on the simple diffusion picture outlined 

(1988) where it was shown that the time dependence of each Fourier component 
becomes modified due to the fact that the diffusion coefficient D depends on the 
particle size, and thus changes as a result of coagulational growth, this change being 
greater in  regions of greater 1p where growth is more rapid. The technique used by 
Simons and Simpson (1988) was to consider the solution of the equation governing 
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the number of particles as a function of position and time, taking into account both 
particle diffusion and coagulation in the formulation of the equation. However, in 
tackling the equation two approximations were used. The first was to assume a solution 
of the 'self-preserving' form (Friedlander and Wang 1966), and the second was to 
linearize the equation, corresponding to the situation where variations in  'p are small 
compared with the spatial mean value. With these approximations it was then shown 
that Fourier components of q decay independently with modified time dependence as 
outlined above. 

The purpose of this paper is to consider afresh the equation governing the number 
of particles in the presence of both particle diffusion and coagulation, without making 
the above approximations. The main new result that emerges is that Fourier components 
of the particle number do  not now decay independently. Rather, if at some time there 
exist Fourier components characterized by the wavenumbers k and k', then, with the 
passage of time, these will produce a new component with wavenumber K, given by 

K = k * k ' .  (4) 

The production of this new component is a consequence of the quadratic form of the 
coagulation term in the equation, and the rate at which it is produced is proportional 
to the product of the number of particles in each of the k and k' modes. One important 
consequence of this concerns the situation when Ik - k'l<< Ikl or lk'l. Since the damping 
of each mode follows equation (3), at least approximately, the possibility exists of the 
created mode K having a significantly greater lifetime than those of the modes k and 
k' which were initially present, and hence of the mode K becoming the predominant 
mode after a sufficiently long time; this will be discussed in more detail in section 2. 
Another consequence of equation (4) is that if initially there was present only a single 
Fourier component k, then with the passage of time components with wavenumber lk, 
for any integer I ,  will be created. 

2. Basic formulation 

Consider an infinite volume of fluid, and let n(u, r, t )  du be the number of particles 
with volumes lying between U and u+du per unit volume of fluid at position r and 
time 1. Then the general equation governing n takes the form 

a n  
at 

where D ( u )  is the volume-dependent particle diffusion coefficient. Here (Jn/df)cwag is 
the rate of change of n due to Brownian coagulation, and is given by c:) = 4 1; P (  u, u - u ) n ( u )n ( u - u ) du - n ( u) 

Eolp 

where P(u, U) is th,: kernel describing the coagulation. 
We begin by no,i-dimensionalizing equation ( 5 a ) ;  to do this we define 

T = t / 7  R = r1.Z 

U = u J W  V = u f W  N = O'n 
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where T and 2 have the dimensions of time and length respectively while W and 0 
both have the dimensions of volume. For all situations of interest (see Simons and 
Simpson 1988) 

D ( v j  = pu-' ( 7 a )  

P(u, u)= .uG(u ,  U )  ( 7 b )  

where p and U are physical constants and G(u,  U )  is a homogeneous function of U 
and U with degree (I satisfying 

G ( l , l ) = l .  ( 7 c )  

We suppose 01 to be sufficiently small for gelling phenomena not to occur. On 
transforming equation ( s a )  to the non-dimensional variables defined in equations ( 6 ) ,  
and imposing the conditions 

we find that equation (5a) takes the form 

V - ' V ; N + F [ N ,  NI 
a T  (9) 

where the operator F is defined by 

F[X, Y]=f  G(U,  V - U ) X ( U ) Y ( V - U j d U - X ( V )  G(U,  V)Y(U)dU.  

(10) 
The basic technique we use to tackle equation (9) is to make a spatial Fourier analysis 
of the function N (  V, R, T ) ,  so we therefore express N in the form 

JOV 5: 

N(V,R,T)= Mk(V,T)exp(ih.R)dk (11) J 
where the integration is taken over the whole of h space. Since N is real, M must 
satisfy the condition 

M - ~ (  v, r) = M:( v, rj. (12) 
It then readily follows from equations (9) and (11) that M satisfies the relation 

-+ K2V-'MK = F[M,, MK-k]  dk. JMK 
aT 

Equation (13) is the basic equation describing the combined effect of particle diffusion 
and coagulation; it yields a unique solution for MK( V, T )  when supplemented by the 
value of MK( V, 0). 

In the absence of coagulation the right-hand side of equations (13) is zero and the 
resulting equations are then uncoupled for all V and K, leading to the usual exponential 
decay solutions. In the presence of coagulation, however, the existence of a non-zero 
right-hand side means that the equations (13) are coupled together for all V and K 
and this, of course, vastly complicates their solutions. We may note, however, that if 
equation (13) is multiplied by V and then integrated with respect to V from 0 to CO, 
it follows from a standard result concerning the operator F (Drake 1972) that the 
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right-hand side becomes zero. Equating the left-hand side to zero then gives the 
differential equation for the mass density q K ( T )  =jT VM,( V, T )  dV: 

Finally, we note that if the function N (  V, R, T )  is expressed as a sum over discrete 
modes of the form 

N(V,R,  T)=CMh,8(v,  T)exp(ik,.R) (15a) 
4 

(with M-,,,( V, T )  = M$,( V, T ) )  then it is readily shown that the analogue of equation 
(13)  is 

It is worth pointing out at this stage that equation (15a) may be equivalently expressed 
in the real form 

N( V, R, T )  = 2 C' 1 Mx,,( V ,  T)I cos[kq. R + &,,( V, TI1 (156) 
4 

where p = arg M and Xk implies a summation over all k, with positive component in 
a specified direction. It follows that 21Mk"I represents the actual number of particles 
in the real mode specified by k,. 

Before proceeding in the next section to a quantitative discussion of equations (13) 
and (161, we consider new ~ e m e  q.x!i!ative imp!icz!locs of:kese eq"a!ions. Sappose 
that at some time f there exists spatial sinusoidal variations in N characterized by 
wavenumbers k and k'; by reference to equation (15a) there will be non-zero M's  
with subscript +k, *k'. In equation (16) the wavenumber appearing on the left-hand 
side is the sum of the wavenumbers on the right-hand side and hence there will be a 
non-zero right-hand side for K = k i  k'. The structure of the equation shows that this 

is initially zero, it will become non-zero with the passage of time corresponding to the 
creation of a new Fourier component of N with wavenumber K given by equation 
(4). An interesting general consequence of this concerns the situation when K = Ik f k'( 
is much less than k or k'. We first note that Mx d V  are both finite, 
assuming that at f =0, n du is finite. It follows that since 0- < 1 - s s 1 in all cases 
of interest (see Simons and Simpson 1988), 1; V'-'M, d V  is finite for all K ;  hence as 
K -0, the right-hand side of equation (14) tends to zero. Thus for sufficiently small 
K ,  the rate of decay of qK will be less than that of q, or px.. Hence the possibility 
exists of the created mode K having a greater lifetime than k or k' ,  thus becoming the 
predominant mode after a sufficiently long time. One consequence of this concerns 
the situation where initially there exists a finite wavetrain of length s( >>A = Z r r / k ) .  The 
Fourier analysis of this gives a continuous spectrum of wavenumbers, centred on k 
and with width A k - s - ' ( c <  k ) .  The above discussion shows that with the passage of 
time new wavenumbers will be generated forming a continuous distribution in the 
neighbourhood of K = Ak, and corresponding to a wavelength A'=2rr /K  = 2 m .  For 
s >> A, K << k and hence these created modes may possess a much greater lifetime than 
the original wavetrain from which they were produced. 

"o"-zCro rig!!!-!!& side Fi!! ZC! 8s 1 so??rce term for .Mi,,., and ! h E ,  eve!? if !his M 

VM, d V  and 



Diffusive relaxation Jor a system of coagulating particles 281 

3. Development for a discrete spectrum 

In order to develop the above approach quantitatively we now consider the situation 
where initially the spatial variation of N is a linear combination of n sinusoidal 
variations characterized by wavenumbers p , ,  p 2 , .  . . , p.. Additionally there must exist 
a suitable spatially constant distribution for N to be positive everywhere, and thus, 
in terms of equation ( l sa) ,  the only non-zero M's at t = 0 are those with subscripts 
0, *pl, * p , , .  . . *p. .  The discussion in the last section shows that these modes will 
interact to create new modes with wavenumbers of the form p ,  *py ( I s  r, 9 s n), and 
these will then interact further with each other leading in due course to the generation 
of modes with wavenumbers K of the form 

Kl,.l, ..... I , ,=  Z: (17) 

where l, (1 s 9 s n) can take all positive and negative integer values. The set of 
quantities I = ( I , ,  I , ,  . . . , I,,) define a lattice in n-dimensional I space, and if we use MI 
to denote M with subscript K,,,,2 ,.... ,,,, equation (16) takes the form 

4 = 1  

These equations are to be supplemented by the given initial conditions on M at i = 0. 
To specify these, it is convenient to introduce *L,  ( 1  S r S  n )  to denote the 2 n  unit 
lattice vectors in I space (given by L, = / with l, = + I  and I,, = O  (9 # r ) ) ,  together with 
0 to denote the null vector. Then the waves originally present correspond to 1 = 0  (the 
spatially constant distribution) and I = *L,  ( 1  s r s n) (the set of given sinusoidal 
waves). The initial conditions on M are thus 

MI(  V, 0) = 0 ( / # O ,  
MO( V, 0) and M*L,( V, 0) take specified non-zero values. 

Equations ( 1 8 )  constitute an n-fold infinite set of nonlinear differential equations, 
and as such it  is clear that little progress can be made with obtaining a general solution, 
Our approach is therefore to investigate whether any general properties of the M's 
will allow a significant simplification in equations ( IS ) ,  and to do  this we begin by 
looking for a power series expansion in T of M,( V, T )  of the form 

m 

Mt(V, TI= Ct,(V)T' (19a)  
r - U  

where 

C,, = (l /s!)[d '  MI(  V, T)/dT'],=, ( s a l )  

= M,( V, 0) (s=O). (19b)  
This approach is motivated jointly by the possibility of differentiating equation (18) 
repeatedly to calculate C,, together with the fact that at t = 0, M, = 0 except for I = 0, 
+I,, ( 1  s r <  n). It may then be proved by induction that the leading non-zero term in 
the expansion (194)  is the one with s = X ; = ,  l l g l - l  ( I Z O ) ;  details are given in the 
appendix. This implies that initially M increases more slowly with T as the number 
of unit steps required to reach the lattice point I from 0 increases. This is  to be expected 
physically since more steps to reach I correspond to more interactions having to occur 
in order to create a mode with the corresponding K. 
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An important application of the above approach is in showing how MI( V, T) scales 
with the strength of the initial departure from spatial homogeneity for the case where 
this is small. Let us suppose that at f = 0 

K L . (  V, 0) = E,J*,( V) ( I s r s n )  (200) 

(/omJ+,(V)dV/ =f,(omMdV,O)dV ( 1 s  r s  n) .  (206)  

where J*, is chosen so that 

The physical significance of equation (20b) is that E,  then equals the ratio of the initial 
total number of particles in each real relaxation mode to the initial total number in 
the spatially constant mode. We investigate in the appendix how the non-zero C,, 
depend on E , ,  E ~ ,  . . . , E,.  The main result that emerges is that although the dependence 
of C on the E'S  can be very cpmplicated, depending on s, the leading term in C, for 
small E scales with the E ' S  as 

&(l,l&y>l, , , &~,'I. (21) 
Since this is independent of s it follows that for sufficiently small E ,  M, will itself scale 
in this way. Scaling by this expression (21) is essentially the result of implementing a 
linearization-type procedure for the present situation whereby only the leading term 
is retained in an expansion of the M's in terms of the E ' S .  The fact that the power of 
E,  in expression (21) increases as 11,l increases follows from the quadratic nature of 
the right-hand side of equation (18) together with the larger number of interactions 
required to create a mode with greater \l,l. 

We now restrict our attention to the case of small E where MI scales according to 
the expression (21). We let 

(22) M, = E l ~ l ~ ~ l , ,  , EIV~IQ, 
and introduce Q, into equation (18) retaining only terms of lowest power in the E'S.  

On the right-hand side of equation (18), the power of E, in F [ M m ,  MI+*] will be 

A, = I mpl + 11, - mp I. 
Now, if mp lies in the interval [0, I,,], then I/, - m,, =I/,, - \mpl ,  while if m, lies outside 
this interval, I/, - mpl > \ I , ,  - Impl. Thus, if mp lies in the interval [0, I D ] ,  A,, = II,I, while 
if m, lies outside this interval, A,,>/l,,/. As we are currently retaining only the lowest 
power of E,, it follows that we need retain in the summation over m,, only the 
contribution from m, within the interval [0, I,]. The equation for Q1 then takes the 
form 

dQI+K2V-'Ql-(F[Qo, QJ+F[Qt, QJ= 1 F r o m ,  Q 1 - J  ( l # 0 )  (236) 

where the summation in equation (23b)  now involves m,, lying within the interval 
0 s m,, s I ,  for /,, > 0 and within the interval /,, s m, s 0 for I,, < 0, with the exception 
of mp = O  (all p) and m,, = I,, (all p). (These omitted terms are shown explicitly on the 
left-hand side of equation (23b).)  Corresponding to equation (20a) .  the boundary 
condition on Q is now 

JT m,. .. m,, 

Q*L,(V,O)=J+,(V). ( 2 3 ~ )  
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The change in the limits of the summation in equation (236) as compared with equation 
(18) renders the former much easier to tackle for three reasons: firstly because the 
summation now involves only a finite number of terms rather than the n-fold infinite 
number that existed before; secondly, as a consequence of the fact that both lm,, and 
I/,,  - m,l can never exceed 1l,1 the equations (23b) may be solved sequentially allowing 
a single component of I to increase by unity at each stage-in much the same way as 
a set of linear algebraic equations may be solved sequentially if the corresponding 
matrix is triangular; thirdly, in the implementation of this approach, the equation for 
Q, obtained at each stage is linear, except for I =O. 

Although the above derivation of equation (236) has been given only for small E ’ S ,  

the equation will in fact be valid for all E ’ S  in the limit of small T This follows from 
the fact that the omitted terms exhibit a higher power dependence on T than those 
which have been retained, as is readily seen from the result given earlier on the leading 
non-zero term in MI( V, T) for small T 

The above results clearly simplify when n = 1 corresponding to  the existence initially 
of a single mode characterized by wavenumbers i p .  The created modes then have 
wavenumbers K =  lp ( - m s  l s + m ) ,  and equation (236) takes the form 

and the same left-hand side with zero on the right-hand side when l = 1. We note that 
the approach used by Simons and Simpson (1988) for investigating the effect of 
coagulation on a single Fourier component was essentially through the approximate 
solution of equation (24) for the case of I =  1. 

4. Constant diffusion coefficient D and coagulation kernel P 

In general, both the diffusion coefficient D and the coagulation kernel P a r e  functions 
of the particle volume U, the precise form of the functional relationship depending on 
ine structure 01 m e  par~icre (cumpacr or rraL-rari ariu on me value 01 n n ,  me raiio of 
gas molecular mean-free path to particle size-see Simons (1988) for further details. 
As a result of this it is necessary to use numerical techniques in order to solve equations 
(23) accurately, and it is intended to follow this up in later work. Meanwhile, however, 
it was considered worthwhile tackling these equations under the assumption that both 
D and P a r e  constant, independent of particle volume, as with this assumption analytic 
solutions can be obtained. This assumption of constant P and D is expected to give 
a reasonable, semi-quantitative description of the real situation since for the latter in 
the regime Kn<< 1 both P and D are functions which vary relatively slowly with their 
respective variables as both are homogeneous functions of those variables with degree 
of homogeneity being respectively 0 and f. A further reason for exploring this option 
of constant P and D is that analytic solutions are very useful for validating computer 
progrzms designed !e se!ve !he eq??a!ions with the- correct vo!??me-dependcn! P znd D. 

We begin by considering equations (236) where, with the present assumption of 
constant P and D, s = 0, and 

.L. P . L .  -.A:... < ~ .. P ..... I >  ... J ... - 8 . .  r ,,~~ AL. 

X ( U ) Y (  V -  U) d U - X (  V )  (25) 
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since G = I .  We now proceed to calculate p, the total number of particles in the Fourier 
component eiK'R characterized by 1. From equation (22), this is given by 

(26a) pr = E t '  I l l  &>' I l l  . . . &!"lqi 

Integrating equations (23a, 6 )  with respect to V from 0 to m then yields the following 
equation for q, :  

( 2 7 ~ )  

( 1  f 0) (276) 

J %  I 2 - + z q n = O  
JT  

J qi 
- + ( K 2 + q d q 1 = - f  1 qm4r-, 
J T  m ,..... m,, 

where the m summation is over the same interval as in equation (23).  Equation (27a) 
is the standard equation for a spatially homogeneous aerosol, with the solution 

We now consider equation (276) for the case where I is a unit-lattice vector iL, (thus 
corresponding to one of the waves originally present in the aerosol) for which the 
right-hand side of the equation (276) is zero. Making the use of equation (28), we 
readily obtain the solution of equation (276) in the form 

The exponential term in the numerator corresponds to the usual diffusive loss of 
particulate material due to relaxation, while the term in the denominator corresponds 
to the decrease in particle number arising from coagulation. We now consider the 
solution of equation (276) when 1 = L, + L. ; this of course corresponds to the simplest 
type of interaction of the waves originally present in the aerosol, with K ,  =p,+p.. For 
L, # L, the solution is 

while when L, = L, there is an additional factor o f f  on the right-hand side. We simplify 
equation (30) by defining 

where 
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If L, = L, the factor 2 in equation ( 3 2 a )  is omitted. Evaluating the integral in equation 
(32b) gives: 

i f a = O  

F(O,P, z )  = z exp( - p z ) / (  1 + z)' ( 3 3 0 )  

if a>O 

where the exponential integrals E , ( x )  and E 2 ( x )  are defined for x >  0 bq 

with P denoting the principal part (Abramowitz and Stegun 1965). We now express 
the total number of particles U( R, T )  = N (  V, R, T )  d V in the real form 

v(R, T )  = x ' N , (  T) cos[K,.R+ y,( T ) ]  (34) 
I 

where Xi implies a summation over all K, with positive component in a specified 
direction. It is then readily shown that 7, = arg q, and that 

NI( T )  = 2E\ l I '&! IZ '  . . . &!."Jq,( T)J 

No( T )  = qn( TI. 

( I + O )  ( 3 5 a )  

(356) 

It is clear that N, represents physically the total particle-number density in the real 
mode specified by K,. Equations ( 2 8 ) ,  (29) and ( 3 2 a )  then yield 

Nn(z) /NdO)=l / ( l+z)  

where b = 2 p : / q o ( 0 ) ;  if L, = L, the right-hand side of equation (36c) is halved. We can 
use these results to illustrate the point made earlier that if K ,  < KL, and KL, then as 
a consequence of the lifetime of the I mode possibly becoming greater than that of 
the L, or  L, modes, the value of NI may eventually exceed that of NL, or NL,. To show 
this explicitly we note that equations (36b. c) imply that 

. V I ( z ) / ~ , . , ( z )  = ~ , ( 1 + 2 ) ~  exp(bz)F(a <O, P, z )  

(where b '=  2 p ; / q , ( O ) )  on usingthe explicit form ( 3 3 c )  for F, togetherwith the inequality 
( x + 2 ) - ' < e x p x E 2 ( x ) i ( x +  l ) - '  (Abramowitz and Stegun 1965). Since we are cur- 
rently taking b > p (corresponding to K ,  < &,, , & ) .  it  follows that for sufficiently 
large z, N l ( z )  will exceed N L , ( z ) .  
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Finally we make a rough estimate of the magnitude of A”,/.Mo. Let R be the mean 
particle radius, p the proportion of space occupied by the particulate matter and A, 
the wavelength corresponding to the dimensionless wavenumber p.. It then readily 
follows from previous work that 

where 0 and 7 are respectively the temperature and viscosity of the fluid. We suppose 
the latter to be air at room temperature, and take p = 5 x IO-’, R = mm and 
A, = A, = 2.5 mm. For r = 5 min, this gives b = 0.2 and z = 1. It then follows from 
equations (33c), (36a, c)  that for A , > 5  mm, 

A”,(1) /h”o(1)  = 0 . 2 E , E ,  

and thus if E , -  E,-0.3, N,(l) will be about 2% of No(l). It is clear that although it 
would be very difficult to make experimental measurements of the particle number in 
the induced mode IC, such measurements could nevertheless provide very useful 
information on particle diffusion and coagulation. 
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Appendix 

With C,, defined in equation (196) we proceed to prove that 

c,, = 0 for I / J > r + l  

for z l & , l ~ r + l  Cl, # 0 

q = i  
( a )  

r = O ,  1,2,  

q = l  

(b )  If CO, is independent of the eq and C.tLI is proportional to E,,  then for all C,, # 0, 
the leading term in E ’ S  in C,, is proportional to 

El‘,lei‘.l , . , E p ,  

Proof of (a). Denoting d’M,( V, T)/dT‘lT=,l by M)” we obtain, by repeated differenti- 
ation of equation (18) 

a 

M ) ‘ + ’ ~ + K ~ v - ’ M ; ~ ~ =  pr5 1 F[M~’,M):;’] ( A I )  

for suitable non-zero constants p,.. We now develop an inductive proof, assuming the 
proposition that M{”#O forL:=, I l J < r + l  and MI“=O for8;=,1/ ,1>r+l  to hold 
for r s  k, and proceed to show that it remains true for r = k + 1. 

r=” “l,,. ... “I , ,=-= 
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Concerning the M terms appearing on the right-hand side of equation (Al ) ,  it 
follows from the inductive hypothesis that 

n 

if 1 I l , - m , / c k - s + l  (A3a) 

MI!;'' = 0 if l l q - m q l > k - s + l .  (A3b) 

M ( k - 3 1  
I - m  $ 0  

g = ,  

n 

V = l  

Fo; :he ;igh:.hafid side of cTGz60fi [AI) give 2 fiofi-icyo coiitii~G:iofi M y + ' )  
there must exist suitable non-zero terms in both ME' and M;!i3'.  That is, i t  must be 
possible to specify m, and s ( s k )  so that the inequalities in (A2a)  and (A3a) can 
hold simultaneously. Now, if m4 lies in the interval [ 0 , 4 ] ,  llq-m91 =llqI-lmJ, while 
if m,, lies outside this interval, / l q - m q ~ > ~ l q ~ - ~ m 9 [ .  To satisfy the inequality in (A3a) 
it is therefore necessary that the inequality 

should be satisfied, and adding this to the inequality (A2a) gives the following necessary 
condition for both to be satisfied 

-r 11 l < L l l  I+."\ L. , + I - &  I L. 

* = I  

Thus if I/,l> k + 2 ,  no contribution to M$"" will arise from the right-hand side 
of equation (Al ) .  Further, it follows directly from the inductive hypothesis that the 
second term on the left-hand side of equation (A2) will give no contribution to M;"" 
i f x i = ,  Il,l> k + l , a n d t h u s  ifX:=, 11ql>k+2,  M)*+"=O. Further,forX:=, l I , I s k + l  
ths  second terE ox :he !eft=ha-d side nf the eqnation (.A.?) wi!! exsure that ~ 4 ) ~ ~ ' '  + n "3 

and it therefore only remains to show that when XG=, IlqI = k + 2 ,  m, and s can be 
specified to simultaneously satisfy inequalities (A2a)  and (A3a). To do this we choose 
m, to lie in the interval [0, l , ] ,  when inequality (A3a)  becomes equivalent to S:=l Il,, - 
X:=, I m , l s k - s + l  and thus, since S:=, l lq l=k+2 ,  this is equivalent to X:=llmqlz 
s+ 1 .  This can be satisfied at the same time as (A2a) ,  if, and only if, we choose m, so 

all s; these will automatically satisfy the only other constraint on m,, that Xi=, 1m41 s 
X;=l Il91 = k + 2  since s s k  This completes the proof that if the inductive hypothesis 
holds for r s k ,  it will also hold for r =  k + l .  Now, the hypothesis is true for k = O  
where the only non-zero M ,  are those for which Xi=, 11,l S 1 .  Hence it is true for all 
positive integers r. 

,%oJojibj. Here again we use an inductive proof, assuming the proposition that the 
leading term involving E ' S  in non-zero MI" is proportional to E ~ ' ~ E ! ? ~ .  . . E!,,' to hold 
for r s k. We then proceed to show that it remains true for r = k + 1.  

With reference to equation ( A l ) ,  it  is clear from the inductive hypothesis that the 
proposition will hold for the contribution to M)"" arising from the second term on 

that x;-; Im, l=sf ! .  This wi!! have so!utions for .mq !ying in !he interva! [n3!9] for 
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the left-hand side. Regarding the right-hand side, a non-zero contribution to Mlr+” 
will be given by suitable non-zero ML’ and Mi:;), and making use of the inductive 
hypothesis the leading term in E ’ S  arising from these will be proportional to 

n Elm,l+ll,,-mql. (A5) 

Now as pointed out earlier 11, - m,Ia I I , l -  lmql, the equality sign corresponding to m4 
lying in the interval [0, l q ] .  It follows from expression (A5) that the lowest power of 
E~ that arises on the right-hand side of equation (Al)  is I I J ,  and hence if the proposition 
is true for r s k, it will also be true for r = k + 1. Now, when r = 0 the proposition is 
true for all non-zero M’s, since Mho) is independent of the E ’ S ,  and M‘,U:,is proportional 
to E,. Hence the proposition is true for all positive integers r. 

q = 1  
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